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ABSTRACT 
We propose JetUnit, a water-based VR haptic system designed to 
produce force feedback with a wide spectrum of intensities and 
frequencies through water jets. The key challenge in designing this 
system lies in optimizing parameters to enable the haptic device 
to generate force feedback that closely replicates the most intense 
force produced by direct water jets while ensuring the user remains 
dry. In this paper, we present the key design parameters of the 
JetUnit wearable device determined through a set of quantitative 
experiments and a perception study. We further conducted a user 
study to assess the impact of integrating our haptic solutions into 
virtual reality experiences. The results revealed that, by adhering 
to the design principles of JetUnit, the water-based haptic system is 
capable of delivering diverse force feedback sensations, signifcantly 
enhancing the immersive experience in virtual reality. 

CCS CONCEPTS 
• Human-centered computing → Haptic devices; Human com-
puter interaction (HCI); Interaction devices. 
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1 INTRODUCTION 
Studies have shown that realistic force feedback can signifcantly en-
hance VR immersiveness [66]. Recent research has explored various 
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Figure 1: (a) The JetUnit ofers force feedback over a wide 
range of perceived force intensities and pulsing frequencies. 
A single wearable JetUnit can render interactions ranging 
from (b) a gentle touch to (c) a progressively accelerating 
injection. 

mechanisms for delivering force feedback in VR, including pneu-
matic systems [10, 12, 22, 26, 37, 75], exoskeletons [14, 62, 70, 77, 80– 
82], electric muscle stimulation (EMS) [17, 30, 40, 47], and combina-
tions thereof [46, 58]. While each of these approaches can efectively 
deliver certain types of force feedback, they are often limited by the 
strength, frequency, or pattern of the force that can be produced, 
thus constraining the range of VR application scenarios. For exam-
ple, a pneumatic system may excel at simulating gentle touches 
[75], but may fall short in replicating the sensation of a sudden 
and intense impact. On the other hand, a rubber-based haptic de-
vice [81] may be adept at conveying instant impacts, but struggle 
with soft, gentle touches or rapid, repeated sensations, such as the 
feeling of continuous raindrops. Therefore, achieving diverse force 
feedback that matches various user scenarios remains challenging. 
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In this paper, we propose JetUnit, a working wearable prototype 
engineered to provide force feedback across a broad spectrum of 
perceived force intensities and frequencies for various VR scenar-
ios. Central to our system is the use of water jets to render force 
feedback. Compared with other mediums such as air, water was 
chosen due to its incompressible nature [24, 88]. According to the 
Navier-Stokes equation, a pressure change in incompressible fuids 
can directly result in a change in velocity and thus impact force, 
allowing for more efcient momentum transfer. This property al-
lows for the delivery of both strong and gentle force feedback in 
a variety of patterns on the user’s body, akin to the experience of 
with water-based massage systems like Jacuzzis. In the meantime, 
the JetUnit distinguishes itself as a self-contained wearable system— 
while ofering force feedback, the JetUnit ensures users remain dry, 
making it suitable for VR applications. 

The key to JetUnit implementation is its custom-designed cham-
ber unit. The chamber unit propels water directly onto a thin mem-
brane, which transmits haptic sensations to the users’ skin. The 
membrane, securely sealed at the chamber’s opening, ensures the 
water remains contained. However, this design risks reducing the 
intensity of the water streams due to the accumulation of water 
inside the chamber and the turbulence introduced thereafter. To 
address this, we have implemented four measures in the chamber 
design. The frst measure involves connecting the outlet of the 
chamber to a recycling pump to facilitate efcient water drainage. 
The second measure is adding a ring channel with side openings 
adjacent to the membrane sealing area. This design enables rapid 
evacuation of water from the chamber surrounding the membrane 
area to the outlet of the chamber. The third measure is a thin pro-
tective sleeve with a cross-section slightly larger than that of the 
water strand. This sleeve is positioned around the water strand, 
efectively isolating it from the turbulence within the chamber. The 
fnal measure optimizes internal and external air pressure balanc-
ing. This is achieved by incorporating one check valve and two 
PTFE adhesive patches. When combined, these mechanisms greatly 
reduce the impact of water accumulation on the strength of water 
streams. We detail the design of the chamber unit and present a 
set of quantitative experiments and a perception study to optimize 
the design parameters. The current JetUnit prototype can achieve 
a range of 16 to 442 kPa on-skin contact pressure and a maximum 
frequency of 10 FPS. 

Additionally, we conducted a user study to investigate the ability 
of the JetUnit prototype to render various haptic patterns within a 
single VR story. Participants reported their experiences, particularly 
noting the degree of reality and enjoyment achieved through the 
integration of various haptics with our system. 

2 RELATED WORK 

2.1 On-body Force Feedback in VR 
Providing force feedback that matches the magnitude and duration 
of an interaction is key to enhancing realism in VR. Researchers 
have focused on developing haptic devices to deliver precise force 
feedback tailored to specifc interactions, including both soft and 
gentle touches (e.g., [31, 41, 67, 89]) as well as intense impacts 
(e.g., [2, 80–82]). Since rendering gentle and intense haptics often 

requires distinct force activation mechanisms, much research ad-
dresses these separately, focusing on one group of force feedback 
at a time. 

Several studies have explored the rendering of gentle and soft 
touches to one’s fngers. For example, TapeTouch [92] proposes 
using a piece of soft tape and varying its contour deformation to 
provide soft sensations upon touch. Suga et al. [73] demonstrate 
softness rendering to a fnger by combining electro-tactile stimu-
lation and force feedback. Similarly, Sonar et al. [72] attach a thin 
piece of soft pneumatic actuator to one’s fngertips, ofering subtle 
sensations and tactile perception. 

Other research aims to ofer strong, often sudden forces for an 
immersive VR experience. For example, ImpactVest [81], ElasticVR 
[82], and ElastImpact [80] render multilevel impact force feedback 
on the body, hands, or head, simulating experiences such as being 
shot, punched, or slashed by using independently controlled im-
pactor blocks equipped with elastic bands. Motor-driven devices 
have also been widely used as a means to render strong forces. Ex-
oInterfaces [83] and GuideBand [79], for example, use DC motors 
in opposite directions on the upper arm to pull the user’s forearm, 
generating strong forces. Recently, propeller thrust has garnered 
interest in generating strong force feedback. For example, Thor’s 
Hammer [27], LevioPole [68], AirCharge [6], Wind-Blaster [33], 
and Aero-Plane [32] attach varying numbers of propellers or air-jet 
compressors to handheld devices or directly to a user’s wrist to 
provide strong force feedback in VR. 

The last group of research focuses on rendering force with 
gradual changes. For example, Force Jacket [12] uses an array of 
pneumatically-actuated airbags to compress the users’ body and 
arms, rendering force feedback with continuously changing levels. 
Similarly, Kanjanapas et al. [37] render gradual changes in shear 
using 2-DoF pneumatic actuators. 

As discussed earlier, while the aforementioned research covers 
a wide range of force intensities, frequencies of occurrence, and 
applications to diferent areas of the body collectively, few can 
encompass multiple types of force feedback within a single device. 

2.2 Mechanisms to Generate Force Feedback 
Given the diverse types of force feedback required in VR, researchers 
have proposed numerous mechanisms to generate them (e.g., [5, 
9, 16, 30, 38, 78, 86]). One common method to simulate haptics 
is through various types of exoskeletons to provide controllable 
force feedback, augmenting the user’s body displacement [60]. For 
example, HapticGEAR [29], Naviarm [50], and SPIDAR-W [54] all 
feature exoskeletons mounted on the back of the user. Other de-
signs, such as CLAW [9], RML Glove [49], and the work by Jo et 
al. [34], are mounted on the dorsal side of the user’s hand. There 
are also exoskeleton haptic devices designed to be mounted on 
the user’s fnger, such as those developed by Perez et al. [61] and 
Leonardis [42, 43]. Alternatively, through diverse types of link-
age designs, exoskeletons can also be passive [44, 91], rendering 
force feedback without external power sources. Examples of such 
works include DigituSync [57], which shares hand poses between 
two users through its passive exoskeleton, inTouch [4], enabling 
passive interactions between users separated by distance, and Hand-
Morph [56], designed to render haptic feedback from a smaller hand 
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through a passive exoskeleton. Recently, supplementary mecha-
nisms, such as active brakes, have also been proposed as a means 
to enhance the capabilities of passive exoskeletons or to broaden 
the range of force feedback they can provide [15, 19, 28]. 

Another popular method involves using electrical muscle stimu-
lation (EMS) to directly stimulate the muscles with electrical pulses, 
providing perceived force feedback. Farbiz et al. [17] develop an 
EMS system that places electrodes on the arm to simulate the sen-
sation of hitting a tennis ball. Hosono et al. [30] use EMS to control 
muscle contractions for sharing tactile experiences on the fnger-
tips. Kurita et al. [40] and Lopes et al. [47] also use EMS to control 
muscle contractions, with Kurita focusing on creating the sensation 
of an object’s stifness and Lopes enabling users to feel the resis-
tance and weight of virtual objects and walls. EMS requires only an 
array of thin electrodes placed around the muscles [63, 74, 76]; thus, 
compared to exoskeletons, its compact form factor makes it suitable 
for wearable haptic devices. However, as the electrical impulses 
travel through the skin, EMS may cause uncomfortable tingling 
sensations [59, 64] to some users. 

The last group of mechanisms to highlight involves pneumatic. 
Pneumatic haptic devices utilize dynamic air pressure to produce 
versatile forces or tactile sensations. By precisely controlling the 
pressurization and depressurization of airbags, various studies have 
explored delivering diferent force feedback to the user’s head, wrist, 
arm, or torso. For example, PneumoVolley [22] delivers tactile sensa-
tions by varying air pressure around the head, allowing users to feel 
compressive forces and pressure changes. Devices like PneuHaptic 
[26], Siloseam [53], Bellowband [90], and Squeezeback [65] use 
compressed air to infate or defate pneumatic actuators placed 
around the wrist or forearm, creating localized pressure and vibra-
tion stimuli. In addition to tactile sensations, pneumatic systems 
have demonstrated the capability to create strong force feedback, 
such as simulating rigid collision efects by combining additional 
embedded MR-brakes [11]. The Force Jacket [12] further develops 
a pneumatically actuated jacket for immersive haptic experiences, 
capable of rendering force feedback not only gentle interactions, 
like a hug, but also strong interactions, such as a snowball hitting 
the chest. Despite their promising potential, pneumatic systems 
face signifcant drawbacks, including slow response times that limit 
their ability to render instant intense impacts and the complexity 
of integrating bulky compressors, which require substantial energy 
to pressurize the air to the desired level. 

2.3 Using Liquids in HCI for Interactions and 
Haptics 

Although not very common, liquids have been used in the feld of 
HCI to facilitate interactions and render haptic sensations. One ap-
proach involves using water to facilitate interactions within water. 
For example, GroundFlow [23] provides multiple-fow feedback by 
having users in VR actually step into a water-based haptic foor sys-
tem. Similarly, Sinnott et al. [71] propose an underwater VR system 
where users are immersed in water for buoyancy training. Com-
bined with visual projections, the AquaTop display [39] enables 
users to interact with a visual-haptic interface by poking, stroking, 
or hitting the water’s surface while taking a bath. Scoopirit [51] 

allows users to scoop up water beneath a projected image, which 
becomes a mid-air image when raised. 

Water has also been used to render tactile sensations on the 
body. Leveraging the sensations rendered by the fow of liquid, 
HydroRing and HapBead [24, 25] utilize the motion of liquid or 
small beads within microfuidic channels to deliver sensations as 
the liquid travels through. Other works explore sensations through 
dynamic changes enabled by liquid. For example, Chemical hap-
tics [48] proposes to deliver diferent types of liquid stimulants 
to the user’s skin to render haptic sensations. ThermoCaress [45] 
reproduces the illusion of a moving thermal sensation by moving 
the pressure stimulation with water. Therminator [21] provides 
on-body thermal feedback through mixing the heated or cooled liq-
uids. The capability to move mass has also been utilized to render 
dynamic changes in weight. For example, GravityCup [7] intro-
duces a liquid-based handheld device that simulates realistic object 
weights and inertia shifts. Similarly, PumpVR [36] renders changes 
in weight by varying the mass of the controllers according to the 
properties of virtual objects or bodies. 

In our work, we utilize water as the medium to provide force 
feedback for VR applications. Distinct from much of the existing re-
search, our approach employs water jets—a stream of fuid projected 
through a nozzle that can travel distances and deliver varying forces 
without dissipating. Although water jets have been used in various 
applications, from fabrication [55] to massaging [3, 85], their po-
tential as wearable force feedback devices remains underexplored. 
Our work aims to fll this gap. 

3 JETUNIT SYSTEM OVERVIEW 
Figure 2a illustrates the JetUnit schematic. It comprises four major 
components: a water source with a tank and water pumps, which 
circulate water throughout the system; a chamber unit that propels 
the water and provides force feedback to the user; a network of 
tubing that carries water to the chamber and recycles it back to the 
water tank; and a control circuit system. We briefy introduce each 
of the major components in this section. In Section 4, we detail the 
chamber unit design. 

Given that the current JetUnit prototype is designed primarily 
for one haptic actuator, the entire system, including six meters of 
tubing, needs only 0.6 L of water, with 0.2 L stored in the water tank. 
The water tank is equipped with a sous vide machine to keep the 
water at a constant room temperature. A 116 PSI diaphragm water 
pump (IEIK) is used as the source pump to pressurize the water. It 
can produce a high fow rate, reaching up to 3.4 liters per minute in 
the 3/8 inch tubing. Between the water tank and the source pump, 
an additional sediment flter (LOVHO) is added to safeguard the 
source pump by fltering out debris carried by the water from the 
tank. 

The water comes out of the source pump, fows through the net-
work of tubing, and divides into two separate streams: the main path 
to the chamber unit that generates force feedback, and a secondary 
path that directly returns to the water tank. A pair of solenoid valves 
(Tailonz Pneumatic 2V025-08) controls these two paths. When the 
main path is open, the water enters the chamber unit, providing 
force feedback to the user, and then, through a recycling pump, 
returns to the water tank. The recycling pump, identical to the 
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source pump, is specifcally used to enhance the system’s water 
recycling efciency. 

Figure 2: (a) Schematic of JetUnit System. (b) The JetUnit 
system setup. 

When no force feedback is needed, the main path is closed, al-
lowing water to directly return to the water tank via the secondary 
path. This path ensures that at any given moment, water within the 
circulation does not accumulate and add unexpected pressure. It is 
important to note that when both paths are open, water can enter 
both paths simultaneously, resulting in a signifcantly reduced force 
exerted on the user. This is suitable for rendering soft and gentle 
force feedback. Detailed analyses of the force variations associated 
with these confgurations are presented in Section 5. 

The water pumps and solenoid valves are controlled by an ESP32 
microcontroller. A RoboClaw 2×60A motor controller is used to 
regulate the speed of the source pump. We note that the use of water 
pumps in the system inevitably introduces noise. To reduce this 
noise, both the source pump and the recycling pump are enclosed 
in a box lined with noise-canceling egg crate foam (WVOVW). 
This box is supported by six shock-absorbing anti-vibration pads 
(MyLifeUNIT) to further mitigate vibrations from the pumps. 

4 CHAMBER UNIT DESIGN 
The custom-designed chamber unit is the key to rendering force 
feedback. It serves two main functions: providing force feedback 
with varying intensities and frequencies through water jets, while 
also keeping the user dry. 

Figure 3 shows the chamber unit design. The chamber unit is 
a 25 mm × 28 mm × 32 mm quasi-cylindrical container with an 

opening at the front. A piece of elastic membrane is installed at the 
front to contain the water. A 1.2 mm diameter nozzle is positioned 
at the back of the chamber, 25 mm from the front opening, facing 
its center, and designed to emit water jets. A protection sleeve with 
a diameter of 4.4 mm and a length of 22 mm is positioned directly in 
front of the nozzle. The pressurized water jet from the nozzle enters 
the sleeve before coming into contact with any possible residual 
water inside the chamber. Additionally, a ring channel around the 
chamber’s front opening is designed to direct water, defected from 
the membrane in any direction, to the conduit that connects to the 
water outlet. Finally, a check valve and two hydrophobic PTFE ad-
hesive patches are installed to equalize the air pressure between the 
chamber and the atmosphere. The protection sleeve, air balancing 
features, and ring channel with the conduit to the chamber outlet 
collectively ensure that the water jet maintains its momentum be-
fore hitting the membrane. In addition, connecting the outlet of 
the chamber to the recycling pump further supports this momen-
tum. In the following subsections, we discuss the chamber design 
considerations in detail. 

Figure 3: (a) Perspective view of a rendering of a half cham-
ber unit cut from the middle. JetUnit chamber’s views: (b) 
perspective, and (c) front view. 

4.1 Membrane Material and the Resulting 
Reduction in Force 

The membrane at the front opening of the chamber unit plays a 
crucial role in retaining water while also delivering the water’s 
impact to the user’s skin. Thus, the material should be able to 
withstand high water pressure without breaking, while minimizing 
energy absorption from the material itself. 

We considered three membrane materials that vary in thickness 
and elasticity, including ultra-thin, 30 µm non-elastic low-density 
polyethylene (material #1); 150 µm non-elastic polyethylene (mate-
rial #2); and 100 µm elastic nitrile butadiene rubber (material #3), 
as shown in Figure 4a. To decide on the material, we measured 
the force exerted after the water was jetted onto each membrane. 
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We used the force of a bare water jet as a baseline (i.e., without a 
membrane). 

Figure 4: (a) Selection of membrane materials. (b) Setup for 
force measurement 

Figure 5: Force measurement results: The blue-tinted curves 
represent the force measurements for both the baseline and 
each membrane material; The grey-shaded area indicates 
the standard deviation of the force measurements at each 
timestamp. 

Figure 4b illustrates the basic experimental setup for force mea-
surement. A 3D-printed basic chamber unit (i.e., excluding measures 
for maintaining water jets’ momentum) was mounted horizontally 
against a straight bar load cell (SparkFun TAL220). One side of the 
load cell was anchored at the edge of the table and the other side 
was hung freely. The load cell was calibrated with a gram-scale 
weight set, ranging from 10 g to 500 g. We activated the water jet 
fve times, each for one second, during each round of measurements 
and calculated the average force reading. 

The result is shown in Figure 5. As expected, the baseline condi-
tion (i.e., bare water jets) presents the highest and most stable level 
of force among all conditions, at approximately 0.84 N. All three 
types of membranes exhibit certain levels of force reduction, with 
materials #1 and #3 showing a force reduction of around 60%, and 
material #2 showing a reduction of around 87%. Due to its thickness, 
the non-elastic material #1 broke several times during our testing, 
leading us to choose the elastic nitrile butadiene rubber (material 
#3) as the fnal membrane material. 

4.1.1 Issues arising from the use of the membrane. While the chosen 
material #3 outperformed the other candidates, using membrane 
has introduced several issues. 

First, the force from the water stream was reduced by 60% com-
pared to the bare water jet baseline. Although the material itself 
would inevitably absorb some of the energy from the water impact, 
this signifcant reduction in force is largely attributed to water ac-
cumulating within the chamber, when the membrane is introduced. 
This accumulation acts as an additional bufer that dampens the 
water stream. 

Second, our experiment revealed that force measurements under 
membrane conditions were unstable, exhibiting large fuctuations, 
as shown by the grey-shaded error area in Figure 5. This instability 
was caused by water rebounding of the membrane, creating inter-
nal turbulence, and intermittently disrupting the fow of subsequent 
water jets from the nozzle. 

Third, the use of membranes also introduced the potential for 
unbalanced air pressure within the chamber. For example, if the 
volume of water ejected from the nozzle exceeds the volume exiting 
the chamber, the increased volume of internal water causes a rise 
in air pressure, leading to the membrane bulging. This bulging 
increases the area of contact with the skin. In contrast, if the outlet 
fow volume exceeds the inlet fow volume, the internal pressure 
decreases, causing the membrane to be sucked in and diminishing 
the force exerted. 

In summary, a basic chamber unit sealed with the membrane but 
without additional measures would result in the force perceived by 
the user being signifcantly weaker and also very unstable. We will 
next introduce additional chamber designs to mitigate these issues. 

4.2 Minimizing the Impact of Accumulated 
Water within the Chamber Unit 

We implemented a total of four measures to reduce the impact of 
the accumulation of water within the chamber unit. 

First, as already introduced in Section 3, we added a recycling 
pump at the outlet of the chamber unit to remove accumulated 
water within the chamber as quickly as possible. Figure 6a and 
b show a comparison of water accumulation with and without 
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Figure 6: (a) Water accumulation, along with internal turbu-
lence, is observed when the chamber opening is sealed with 
a membrane while the chamber outlet is directly connected 
to the water tank. (b) Connecting chamber outlet to a recy-
cling pump, along with incorporating measures such as a 
protective sleeve, ring channel, and conduit, can enhance the 
efciency of water egress. 

the recycling pump. Using the same basic chamber unit, when the 
source pump is activated at full power, the chamber unit without 
the recycling pump is flled with water within 0.6 s. However, with 
the addition of the recycling pump, the chamber is never flled up. 

Second, we designed a ring channel around the chamber’s front 
opening to further accelerate the removal of residual water. Al-
though the recycling pump can signifcantly reduce the accumu-
lated water, some water still remains within the chamber. It is 
important to note that the remaining water cannot be easily re-
moved with a more powerful recycling pump, due to the inherent 
design limitations of the chamber unit, where the water outlet 
cannot be positioned directly adjacent to the membrane. Thus, for 
certain angles of the chamber, such as when the membrane faces 
downward, water will inevitably accumulate until it reaches the 
height of the outlet before it can be suctioned out. 

To address this, a ring channel is designed around the chamber’s 
front opening area, as illustrated in Figure 3 and Figure 6b. This ring 
channel features six openings, each measuring 4 mm in height and 
5 mm in width, evenly distributed around the inner sidewall. When 
water is stranded near the membrane, this ring channel allows 
water to escape through it, before further accumulation happens. 

Third, to further prevent the turbulence caused by the rebounded 
water from interfering with the incoming jet fow from the nozzle, 
we designed a protective sleeve between the nozzle and the cham-
ber front. The sleeve, shaped like a hollow cylinder, has an inner 
diameter of 4.4 mm—slightly larger than the nozzle—with a wall 
thickness of 0.6 mm and a length of 22 mm. One end of the sleeve is 
situated just 0.6 mm away from the chamber front. When water is 
pumped out of the nozzle, the sleeve efectively isolates the water 
stream from any potential accumulated water within the chamber. 

Finally, to optimally balance the external and internal air pres-
sure of the chamber unit while activating the recycling pump, we 
incorporated two circular openings of 10 mm diameter into the side 
wall of the chamber unit. These openings are covered with biomedi-
cal scientifc hydrophobic polytetrafuoroethylene (PTFE) adhesive 
patches. These patches, which boast a fltration rate of 99.97%, are 
capable of fltering particles as small as 0.3 �m, thus helping to 
maintain pressure equilibrium while also preventing water leakage 
through the openings. In addition, we installed a one-way check 
valve (B08FJ1TSSJ) on the chamber unit to improve air fow into the 
chamber, particularly during periods of negative pressure inside 
the chamber caused by activating the recycling pump. 

4.2.1 Improvement. After implementing all the upgrades to the 
chamber confguration, we compared force measurement results 
under three conditions: one with bare water jets from a 1.2 mm 
nozzle placed 25 mm away from the load cell; another with the 
same nozzle inside a chamber 25 mm away from the thin elastic 
membrane; and a third condition featuring the same chamber con-
fguration as the second, but additionally outftted with a recycling 
pump and the upgraded confguration (i.e. the sleeve, the ring chan-
nel and conduit, and the pressure-balancing opening). We activated 
the water jet fve times at the full capacity of the source pump 
for one second in each of the three conditions and calculated the 
average value of the force readings for comparison. 

Figure 7: Force measurement results: The blue-tinted curves 
show the force measurements for the baseline, the basic 
chamber condition, and the upgraded chamber condition. 
The grey-shaded area represents the standard deviation of 
the force measurements at each timestamp. 

The results are shown in Figure 7. The average force impact 
of the bare water jets is 0.84 N. The basic chamber, which lacks 
efcient water egress measures, could only produce an average 
force impact of approximately 0.33 N from the water jets. However, 
the upgraded chamber can now provide an average force impact of 
about 0.82 N, which is nearly identical to the efect of bare water 
jets. 

4.3 Choosing the Nozzle Dimensions 
4.3.1 Equation of continuity. In fuid dynamics, the conservation 
of mass principle dictates that mass is conserved within a control 
volume for constant-density fuids. That being said, in a given water 
source pump system, the mass fow rate at the nozzle opening 
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remains constant. Therefore, when the nozzle diameter changes, 
the fow rate of the water jets changes inversely to maintain this 
constant mass fow rate. Typically, a smaller nozzle diameter will 
result in higher water pressure and velocity, leading to greater 
impact force at the point of contact. However, it is also important 
to balance this with the capabilities of the water source pump. 
When the nozzle is too small, it can overload the pump system 
by signifcantly increasing the resistance to fow, resulting in a 
decrease in water pressure and velocity. Thus, selecting the optimal 
nozzle diameter is a balance between the pump’s characteristics 
and the desired jet force. 

Figure 8: Measurements of (a) the average force magnitude 
and standard deviation at diferent nozzle-to-contact area 
distances with respect to nozzle diameter; (b) the average 
pressure and standard deviation at a fxed 25 mm nozzle-to-
contact area distance with respect to nozzle diameter. 

4.3.2 Measuring the force of diferent nozzle sizes. To optimize 
the design of the nozzle dimensions, we tested four nozzles with 
diameters of 0.8 mm, 1.2 mm, 1.6 mm, and 2.0 mm, as illustrated in 
Figure 9a. Considering that the distance between the nozzle and 
the membrane surface might also infuence the water jet’s velocity 
upon contact, we assessed the force impact of water jets from each 
nozzle at distances of 5 mm, 15 mm, 25 mm, and 35 mm. For each 

condition, We recorded the real-time impact forces of two-second 
water jets fve times using the setup detailed in Section 4.1. 

As shown in Figure 8a, with the same nozzle diameter, the nozzle-
to-contact area distance has a relatively modest infuence on the 
average force of water jets. To balance the arrangement of tubing 
ftting barbs on the chamber with its compactness, we ultimately 
chose a nozzle-to-contact area distance of 25 mm. This distance 
provides adequate space for the necessary confguration without 
afecting the force of the water jets that much. 

Decreasing the nozzle diameter from 2.0mm to 1.2 mm, as shown 
in Figure 8a, results in an increase in the average force of the water 
jets at the same nozzle-to-contact area distance, following the fuid 
dynamic principles discussed earlier. However, when the nozzle 
diameter is further reduced to 0.8 mm, the force exerted by the 
water jets decreases, indicating an overburden on the pump system. 

Figure 9: (a) A set of nozzle prototypes, ranging in size from 
0.8 mm to 2.0 mm, is used to measure the actual contact area 
of water jets. (b) The set of nozzle prototypes was positioned 
25 mm away from a transparent acrylic board, onto which a 
letter ‘T’ was afxed for calibration. The horizontal line of the 
letter measured 4.7 mm in length, and the vertical line was 
4.9 mm long. Water jets were then activated, and photographs 
were taken. The diameter of the actual contact area can be 
determined through pixel-to-actual length conversion. 

4.3.3 Measuring the pressure. It is important to note that the ab-
solute force measurement is not the only correlation with the per-
ception of the force on the skin. Considering the small contact area 
of the water jets, we decide to use pressure as a more relevant 
metric to assess human perception [8]. Furthermore, to ensure that 
the user does not experience discomfort or pain due to the small 
contact area, it is important to maintain the pressure generated 
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by our system below the pain-pressure threshold (PPT) [18]. As 
our water jet fow rate is high and the water’s travel distance is 
short (25 mm), if we neglect air resistance and spreading, then the 
estimated contact area diameter should be close to the nozzle di-
mension. However, the actual contact area will be slightly larger 
due to the spread of the water stream, infuenced by factors such 
as air resistance, surface tension, and the breakdown of the stream 
into droplets. For an accurate pressure estimation, we measured the 
actual diameter of the contact area, as shown in Figure 9b. Specif-
ically, with the water fow from the nozzle size ranging from 0.8 
to 2.0 mm, the corresponding contact areas measured were 1.4 mm, 
1.5 mm, 2.2 mm, and 3.0 mm, respectively. 

Pressure is defned as the force per unit area, using the formula 

� 
� = 

� 

In our case, the measured delivered force is divided by the efective 
contact area to estimate the pressure. Figure 8b shows the average 
pressure estimation for diferent nozzle diameters. The results in-
dicate that the highest average pressure, 450 kPa, was generated 
using a nozzle diameter of 1.2 mm positioned 25 mm away from the 
membrane. The second highest pressure, 416 kPa, was observed 
with a nozzle diameter of 0.8 mm. The pressure produced by nozzles 
with diameters of 1.6 mm and 2.0 mm was much lower than that of 
the previous two conditions. 

4.3.4 Perception study. Furthermore, we conducted a basic percep-
tion study to collect participant feedback to better understand the 
varied force sensations associated with diferent nozzle diameters. 
This user study was approved by the Institutional Review Board 
(IRB) of our university. 

Procedure: Participants were instructed to wear an adjustable eye 
mask to block their vision and noise-canceling headphones, which 
played light music, to minimize infuence from the surrounding 
environment. Participants were instructed to rest their dominant 
arms on the table with palms facing sideways while the JetUnit 
was placed on the user’s index fnger. We chose the fngertip as the 
force feedback testing area because it is known to be one of the 
most sensitive areas of the human body with a low PPT [18]. 

According to our pressure estimations shown in Figure 8b, the 
highest average pressure produced by our system is within a safe 
zone, ensuring that it does not harm the user. The study involved 
testing with three chamber units in total, each equipped with a 
nozzle of diferent diameter as mentioned above: 0.8 mm, 1.0 mm, 
and 1.2 mm. The source pump of the system was operated at full 
capacity to produce the maximum force impact of the water jets. The 
chambers were tested in a randomized order and each underwent 
fve repetitions, resulting in a total of 15 trials per participant. 

After each trial, participants were asked to assess the perceived 
intensity of the force at their fngertip using a free magnitude scale 
[12], which allows a more natural and subjective evaluation of 
haptic perception. They were also asked to rate their comfort level 
on a Likert scale ranging from -3 to 3 to indicate their comfort level. 
After completion of all trials, the participants were interviewed for 
more detailed feedback. The entire study lasted approximately 40 
minutes. 

Results and discussion: Since participants use their own scales, we 
normalize these diverse ratings to a common scale for comparison 
using the Z-score normalization method. The normalized rating of 
perceived force intensity, � , is given by 

� − � 
� = 

� 
where � is the rating reported by participants, � is the mean of all 
ratings, and � is the standard deviation of all ratings. 

Figure 10: The basic perception study setup with zoom-in 
view at chamber location. 

Participants: Participants (N = 7; 5 females, 2 males), aged 23-
31 (Mean = 26.71, SD = 2.75), were recruited for this study and 
compensated at a rate of 15 dollars per hour. Three participants 
had experience with vibrational haptics, and the remaining four 
participants had varied experiences in haptics. All of them use their 
right hand as their dominant hand. 

Figure 11: Boxplots represent (a) the normalized perceived 
force intensities rating and (b) the comfort level distribution. 

As shown in Figure 11a, after applying Z-score normalization, 
the ratings for all nozzle diameters fell within a range of -2 to 2. 
Among these, the nozzle diameter of 1.2 mm showed the most no-
table perceived force intensity ratings. Given that the perceived 
force intensity ratings did not satisfy the normality assumption, as 
indicated by the Shapiro-Wilk test results (W = 0.93, p < .05), we ran 
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a nonparametric analysis. The Friedman test revealed signifcant 
diferences in perception among the use of three nozzle diameters 
(p < 0.001). Further analysis using Wilcoxon Signed-Rank Tests with 
Holm-Bonferroni adjustments for pairwise comparisons showed 
signifcant diferences in perception between the nozzle diameters 
of 1.2 mm and 0.8mm (p < 0.05), and between the nozzle diameters 
of 1.2 mm and 1.6mm (p < 0.005). However, the diference in per-
ception between the nozzle diameters of 0.8 mm and 1.6 mm was 
not statistically signifcant (p > 0.05). 

This perception result matches the calculated pressure estimate 
presented in Section 4.3.1, demonstrating that with the chosen 
pump in our system, setting the nozzle diameter to 1.2 mm can 
produce the maximum force impact and pressure sensation. 

The comfort level ratings corresponded to the perceived force 
intensities on their fngertips: a higher perceived force intensities 
rating corresponded to a lower comfort level (Figure 11b). Despite 
participants assigning negative values to their comfort levels, dur-
ing the interview session, they clarifed that this primarily pertained 
to the efort needed to counteract the force that pushed their fngers 
away from the chamber membrane. All participants stated that the 
force and pressure exerted by the JetUnit did not cause any hurt or 
pain. 

4.4 Summary of Chamber Unit Design 
Optimization 

The chamber unit’s design was optimized by implementing several 
key improvements. A recycling pump was added at the chamber 
outlet to quickly remove accumulated water, preventing internal 
turbulence and ensuring consistent force delivery. A ring channel 
around the membrane further expedited water egress, while a pro-
tective sleeve between the nozzle and the chamber front isolated 
the water jet from residual water. Pressure-balancing openings 
with hydrophobic PTFE patches and a one-way check valve were 
included to maintain air pressure equilibrium. 

Measurements determined that a 1.2 mm nozzle diameter posi-
tioned 25 mm from the membrane ofered the highest and most 
stable force impact (0.82 N), matching the bare water jet. A percep-
tion study confrmed that this setup provided the strongest force 
sensation without discomfort. 

These enhancements resulted in a fnalized chamber unit capable 
of producing robust and responsive force feedback. All hardware 
schematics and models are made available and open source 1. 

5 CHARACTERISTICS OF THE JETUNIT 
To quantify the spectrum of haptic patterns that can be generated 
by our JetUnit system, we measured them in terms of pressure and 
pulsing frequency. 

5.1 Range of Force Impact 
The JetUnit system is capable of providing a wide range of force 
feedback, measured in pressure. As shown in Figure 12, the lowest 
average pressure achievable with our current implementation is 
16 kPa. This level of pressure is achieved by opening the secondary 
path and setting the pulse width modulation (PWM) of the source 

1https://github.com/znzhang26/JetUnit.git 

pump to 50%. Reducing the source pump’s PWM further does not 
deliver sufcient water to form a water stream. In contrast, closing 
the secondary path signifcantly increases water fow to the main 
path, which in turn increases the pressure at the membrane. The 
pressure ranges from 60 kPa to 442 kPa when the PWM of the 
source pump is adjusted from 30% to 100%. 

Figure 12: Full range of pressure produced by the JetUnit 
chamber. 

We should note that the maximum pressure that we can currently 
render is just below the average PPT in humans. Although our aim 
is to render a strong impact with water jets, we do not intend to 
cause any discomfort to the users. However, as the sensitivity of 
the haptics varies greatly among users, the maximum pressure can 
be easily increased, if needed, by switching to a more powerful 
water source pump. For comparison, consider the HB21000 Jacuzzi 
pump, which has a maximum fow rate of 246 liters per minute and 
is 72 times more powerful than our current source pump. Thus, the 
JetUnit is very capable of rendering stronger forces if required. 

5.2 Frequency of Pulsing 
Our JetUnit system can produce short, impactful bursts; continuous, 
long-lasting impacts; and repeated force feedback, such as high-
frequency pulsing, by adjusting the switching frequency of the 
solenoid valve. 

Figure 13: Comparison of JetUnit and servo motor in terms 
of achievable pulsing frequency and corresponding average 
force magnitudes at each frequency. 

https://github.com/znzhang26/JetUnit.git
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Specifcally, JetUnit can reach pulsing frequencies of up to 10 Hz, 
as shown in Figure 13. Although this frequency is not as high as 
that achievable with a vibration motor, it surpasses the pulsing 
sensations that can be rendered by common exoskeleton devices 
using servomotors. Figure 13 presents a simple comparison of the 
pulsing frequency generated by a lightweight high-torque servo 
motor (DM90S), whose no-load working speed is 0.10 s per 60◦, 
with a stall torque of 2.0 kg · cm. By setting its rotation angle range 
at 35◦, we ensure that there is no contact with the target object 
during lifting. Although in theory this type of servo motor could 
achieve a maximum pulsing frequency of about 7 Hz, in practice 
our measurement setup was unable to record any readings at this 
frequency. The actual highest recorded pulsing frequency was less 
than 4 Hz, which is less than 40% of the achievable frequency with 
our JetUnit prototype. 

5.3 Patterns with Gradually Changing Force 
With the ability to vary intensity and frequency, the JetUnit system 
can produce force patterns that gradually change, including linear, 
sine wave, triangle wave, square wave, and sawtooth wave patterns, 
across multiple cycle frequencies (Figure 14). When combined, this 
library of diverse force feedback types is well-suited for scenarios 
with complex interaction demands, such as accurately matching ac-
tions like touching, pressing, or even striking with sudden changes, 
on the dorsal side of the dominant hand. 

Figure 14: Real-time pressure measurements for haptic wave-
form patterns in sawtooth, sine, square, and triangle waves. 

6 VR EXPERIENCE STUDY 
We conducted a user study to investigate the JetUnit prototype’s 
ability to render various haptic patterns. Specifcally, we examined 
whether participants in VR could perceive diferent types of haptic 
feedback and if these varied force feedback sensations could provide 
enjoyment and a sense of realism. To achieve this, we developed 
a VR story that required diferent interactions from the user with 
their hand. Meanwhile, a single JetUnit device provided various 
haptic feedbacks on the dorsal side of the hand, matching the VR 
story. 

Note that the decision to render the force feedback on the dorsal 
side of the hand was infuenced by the VR scenario. Initially, we 

Figure 15: (a) VR user study setup. VR scenes: (b) user experi-
encing gentle touch, (c) user receiving needle injections, (d) 
user activating a power shield, and (e) user defending against 
fower-shaped monster attacks. 

considered three diferent locations for the haptic rendering: the 
chest [12, 81], the forearm [26, 48, 87, 89], and the dorsal side of 
the hand [1, 20, 35, 52, 84]. In our preliminary exploration, the 
JetUnit device could render haptic feedback to all three locations. 
However, designing convincing VR scenarios for the forearm and 
chest proved challenging due to their larger skin areas compared to 
the small haptic rendering area provided by a single-chamber unit. 
In contrast, the dorsal side of the hand has previously been used 
in VR haptics and has a relatively small skin area, making it more 
suitable for our study with the single JetUnit implementation. 

6.1 Participants 
Participants (N = 11; 8 females, 3 males), aged between 24-29 years 
(Mean = 26.91, SD = 1.76), were recruited for this study and compen-
sated at a rate of $15 per hour. All participants were right-handed, 
and none had any history of hand injuries. Among them, two had 
no previous VR experience, two had limited VR experience, and the 
rest had VR experience. Three participants experienced mild 3D 
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motion sickness while using driving simulators, while the others 
reported no such issues. 

6.2 Procedure 
Participants began with a training session to familiarize themselves 
with the various haptic patterns they might encounter during the 
study. Afterward, they were instructed to wear the chamber unit 
on the dorsal side of their dominant hand. The chamber unit was 
secured with adjustable bands and ribbons to ensure optimal ft 
and comfort. Participants were equipped with a VR headset and 
noise-canceling headphones before being guided to start the VR 
game. Upon completing the game, they were asked to answer both 
Likert scale and open-ended questions designed to collect feedback 
on their VR experience and thoughts on perceived haptics. 

6.3 Task 
The VR story developed for this study is structured around a single 
mission divided into three scenes. Participants, cast as ‘the cho-
sen’ warrior, are endowed with ‘magic’ technology by a group of 
scientists to defeat a fower-shaped monster. 

In the frst scene, participants enter a laboratory where two 
scientists tap the backs of their hands twice in quick succession, 
over a short duration of 1.8 s—one scientist applies gentle pressure, 
while the other applies intense pressure. Subsequently, participants 
receive a needle injection to implant ‘magic’ enhancement fuid 
beneath the skin on the dorsal side of their hands. At the end of the 
frst scene, that is, after injection, participants are prompted with 
a questionnaire to select the series of haptic sensations from the 
options provided that best match their experience. 

In the second scene, participants are provided with three difer-
ent shields to protect themselves from the fower-shaped monster. 
These shields difer in appearance. As participants explore the dif-
ferent shield options, a distinct set of haptic feedback patterns is 
activated: a sine wave, a square wave, or a sawtooth wave. After 
participants choose their shield, a questionnaire pops up asking 
them to identify the haptic pattern of each shield. 

In the fnal scene, participants encounter three rounds of attacks 
from a fower-shaped monster, with pollen hitting the shield with 
diferent frequencies (2 Hz, 3 Hz, and 7 Hz). After surviving all three 
rounds, they report the number of diferent frequencies perceived 
during the three rounds of attack. 

6.4 Results and Findings 
The results are presented in Figure 16. Figure 16a shows the accu-
racy of the participants’ perception in response to various haptic 
patterns rendered to their dorsal side of the hand, which vary in 
perceived force intensities, frequency of occurrence, and wave-
form patterns. Short force durations (1.8 s) for both gentle touch 
and strong poke are easily distinguished by users, achieving 100% 
perception accuracy. Longer force durations, where water jets main-
tain contact with the participants’ hands for 4.5 s to simulate the 
sensation of liquid injection, revealed that 54.5% of participants 
correctly reported gradually increasing contact pressure, while 
45.5% perceived the pressure as constant throughout the injection. 
This discrepancy might be attributed to constant visual render-
ing throughout the injection, which could send mixed signals to 

participants. Although participants did not perceive the change 
in pressure, they still reported enjoying it. The accuracy of per-
ceiving waveform patterns is relatively high. Both sawtooth and 
square waveforms were reported with 81.8% accuracy, and the sine 
waveform is the easiest to perceive among these three patterns, as 
its accuracy reaches 90.8%. All participants were able to perceive 
the pulsing patterns, while 63.5% successfully perceived all three 
frequencies. 27.3% could only distinguish two frequencies, as the 
lower two frequencies were set similarly (2 Hz and 3 Hz), compared 
to the highest frequency defned in the game (7 Hz). 

As shown in Figure 16b, all participants rated their VR experi-
ence as realistic. They mentioned that the haptic patterns matched 
their expectations during interactions in the virtual environment, 
enhancing their immersion in VR. P1 mentioned, “The injection 
on my hand felt very realistic!” P2 said, “... When I felt the pollens 
shooting on my hand, actually, the frequency, is so sharp, so intense. 
It just felt very new, very novel, very realistic... The design of the 
game fts the nature of the hardware... I’m wearing the shield and 
getting shot and that makes everything organic and makes everything 
a good combination.” P6 detailed that “I felt realistic because with 
the visual that I was seeing and with the haptic feedback that I was 
getting, it kind of matched that what I would expect and when I would 
expect a touch to happen... Oh, the person is going to touch and then I 
actually feel the touch... And talking about the touch, say for example, 
the visual was this (the hand moves in a short distance for a gentle 
poke) and this (the hand moves in a longer distance for a stronger 

Figure 16: VR study results. (a) Perception accuracy. (b) Self-
reported ratings. 
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poke compared with the previous one) matched well with my expected 
touch feeling in terms of the strength.” 

All participants in the study enjoyed exploring the virtual en-
vironment, with more than half (54.5%) rating their enjoyment 
as “strongly agree.” One participant (P3) was observed repeatedly 
switching the shields for four rounds, and emphasized her enjoy-
ment in sensing the waves of haptic patterns and imagining the 
fow as it powered up - “I think the most interesting part is powering 
up the shield... I spend a lot of time experiencing the three types of 
shields... I selected the third shield and I really like the way it’s being 
powered up and it even makes me feel I was powering up.” P6 said 
that “It was enjoyable because I have been using VR before, but now I 
have this additional haptic feedback on the body which adds like a 
new sensation. And it’s not just one kind of feedback cause I felt pollen 
shooting, person touching, injection and having a shield, and feeling 
the hittings on the shield. They are all diferent perceptions, which 
were kind of a match to what I would expect if they were happening 
in real. So the enjoyment was this combination of multiple haptic 
feedback that I felt along with the visual.” 

In terms of device usability, participants’ ratings are varied. P6 
said that “The JetUnit device is easy to use just like you put on the VR 
headset. All you have to do is put on your hand and you are ready to 
go... And it syncs easily with the headset.” The reason for deducting 
the easy usability is mainly the weight and fexibility concern. P7 
reported that “The device itself has weight. It feels natural to use it 
as a shield. But at the same time, if you use it to simulate something 
lighter, it wouldn’t make much sense because of the weight.” P10 
suggested making the future version portable as he felt that the 
pad, which fxes the solenoid valve to the arm, restricts movement 
to some extent. 

Overall, the study confrmed that the JetUnit prototype can de-
liver a variety of haptic patterns, featuring a broad spectrum of 
forces and distinct pulsing frequencies. This versatility opens up 
opportunities to enhance user enjoyment and realism by enabling 
diverse haptic feedback across a range of interaction scenarios. 

7 DISCUSSION 

7.1 Limitations 
Although the haptic patterns provided by the JetUnit device are 
generally acknowledged, the system does have its limitations. One 
of the primary challenges is wearability, particularly due to the 
solenoid valve, which must be positioned as close to the chamber 
as possible to minimize latency caused by the travel time of the 
water fow in the tubing. This could be mitigated by using a lighter 
valve, although it would increase the cost of building the system. 

The current setup complicates user mobility and overall comfort 
due to wire and tubing entanglement, which is further hampered 
by stationary water tank and pumps. To address these issues, im-
plementing the solenoid valve with a wireless control circuit could 
signifcantly reduce the risk of wire entanglement, thereby enhanc-
ing user movement fexibility. Additionally, considering that the 
system operates with a relatively small amount of water, there is 
a viable opportunity to integrate a portable water tank and pump 
directly onto the user’s body, which also helps to reduce tubing en-
tanglement. Moreover, the current attachment mechanism could be 
improved for a better user experience. Replacement of the existing 

ribbon with an adjustable buckle strap could improve both ease of 
use and comfort, making the device more practical for extended 
use. 

Another major limitation of the current setup is the selection of 
the placement of the device. As the key contribution of this work 
is the self-contained chamber design, we have focused solely on 
the single-unit implementation on the dorsal side of the dominant 
hand. However, our design is not limited to this placement. For 
rendering haptic feedback on larger skin areas like the forearm, 
chest, or even back, multiple chamber units arranged in arrays can 
be applied, which we will discuss in the following section. 

7.2 Future Directions 
There are several promising directions for the development of the 
JetUnit system. Given the compact and small size of the chamber 
unit, it has the potential to design and deploy full-body haptic 
systems. An approach to achieving a full-body haptic system with 
a single-unit implementation is to allow the chamber unit to move 
around the body [13, 69], reaching target areas as needed. Another 
solution is to create a multi-unit system. By creating an array of 
chambers that can be applied to various parts of the body [12, 81], 
we can simulate diferent environmental conditions, such as light 
and heavy rain, across large areas. This would involve multiple units 
working in concert, better enhancing the immersive experience. 

As highlighted by Participant 5, “I was hoping that the force 
feedback from JetUnit device is not only on a specifc part of my hand, 
instead, my hand in general.” There is a desire for force feedback 
that is not limited to a specifc part of the hand, but encompasses 
the entire hand. Considering that sensation can vary signifcantly 
between diferent body parts, future iterations of the JetUnit system 
should feature adjustable maximum pressure and customizable 
strength settings, accommodating the varying haptic sensitivities 
of diferent body parts. This adaptability is important for achieving 
a more comprehensive and efective haptic experience. 

Another area of future enhancement involves the integration 
of the temperature switching functionality [21, 45]. Leveraging 
water’s ability to transmit temperature changes can signifcantly 
enhance the realism of virtual reality environments, adding a new 
dimension to the user experience. This functionality would allow 
users to feel temperature variations corresponding to diferent 
virtual scenarios, further immersing them in the environment. 

Moreover, exploring ways to vary the contact area on the skin is 
another potential upgrade for the JetUnit system. By altering nozzle 
dimensions or confgurations, the system could render a wider 
spectrum of haptic patterns. However, this would require addressing 
challenges related to water sealing and ensuring that the system 
remains reliable and efective despite structural modifcations. 

8 CONCLUSION 
We investigated a haptic solution that utilizes a water system, de-
signed to create a range of diverse haptic patterns. This system 
achieves a broad spectrum of perceived force intensities and pulsing 
frequencies of haptic rendering. It also enables the rendering of 
force feedback with gradually changing magnitudes on the body, 
opening new possibilities for enhancing VR immersion. 
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